Future estimates of tropospheric ozone radiative forcing and methane turnover - the impact of climate change
نویسندگان
چکیده
We present a range of estimates for future radiative forcings due to changes in tropospheric ozone (O3T ). Ozone distributions were generated by the UKMO 3-D chemistry-transport model for 1990, 2030, 2060, and 2100, using four sets of boundary conditions. Anthropogenic emissions evolved following either the IPCC SRES “high” (A2) or “central” (B2) case. Each scenario was run with both a fixed (1990) climate, and with a changing climate, as generated by a coupled ocean-atmosphere GCM, forced with IS92a emissions. Calculated global mean O3T radiative forcings for the A2 (B2) cases for 1990-2100 were +0.43 (+0.22) W m when climate change was ignored; these fell to +0.27 (+0.09) Wm when climate change was included. Without climate change, CH4 lifetimes (τCH4) lengthened by 7-12 % between 1990 and 2100; however, when climate change was included, τCH4 fell by 0-5 %. Hence climate warming exerts a negative feedback on itself by enhancing O3T and CH4 destruction.
منابع مشابه
Impacts of the large increase in international ship traffic 2000-2007 on tropospheric ozone and methane.
The increase in civil world fleet ship emissions during the period 2000-2007 and the effects on key tropospheric oxidants are quantified using a global Chemical Transport Model (CTM). We estimate a substantial increase of 33% in global ship emissions over this period. The impact of ship emissions on tropospheric oxidants is mainly caused by the relatively large fraction of NOx in ship exhaust. ...
متن کاملInteractive ozone and methane chemistry in GISS-E2 historical and future climate simulations
The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previou...
متن کاملPreindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM
Improved estimates of the radiative forcing from tropospheric ozone increases since the preindustrial have been calculated with the tropospheric chemistry model used at the Goddard Institute for Space Studies (GISS) within the GISS general circulation model (GCM). The chemistry in this model has been expanded to include simplified representations of peroxyacetylnitrates and non-methane hydrocar...
متن کاملChemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century
The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry– climate model (UK Met Office’s Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve...
متن کاملManagement of tropospheric ozone by reducing methane emissions.
Background concentrations of tropospheric ozone are increasing and are sensitive to methane emissions, yet methane mitigation is currently considered only for climate change. Methane control is shown here to be viable for ozone management. Identified global abatement measures can reduce approximately 10% of anthropogenic methane emissions at a cost-savings, decreasing surface ozone by 0.4-0.7 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000